
Multi-Stakeholder Policy Enforcement for Distributed Systems
Robert Walther

robert.walther@tu-dresden.de

TU Dresden

Germany

CarstenWeinhold

carsten.weinhold@barkhauseninstitut.org

Barkhausen Institut

Germany

Peter Amthor

peter.amthor@tu-ilmenau.de

TU Ilmenau

Germany

Michael Roitzsch

michael.roitzsch@barkhauseninstitut.org

Barkhausen Institut

Germany

Abstract
Cloud environments, comprising both virtual and physical servers,

are complex distributed systems that require clear and expressive

configuration descriptions. Human-readable configuration formats

like Kubernetes YAML are state of the art, but they lack the

granularity needed for fine-grained control and advanced policy

enforcement. To address these limitations, we propose an abstract

system description approach that incorporates additional applica-

tion properties, enablingmore sophisticated policy decision-making

rather than relying on resource constraints and port-based network

restrictions. Our framework introduces two modes of policy

enforcement: one allows system designers to automatically verify

and manipulate system descriptions before translating them into

concrete configurations, while the other enables communication

partners to review the descriptions for assessing trustworthiness.

We introduce a user-friendly description language paired with an

extensible policy enforcement engine, providing stakeholders with

the ability to define deployment scenarios intuitively and securely.

We demonstrate the suitability of the approach for three different

platforms, ranging from an embedded system to state-of-the-art

container runtimes, namely Kubernetes and Docker Compose.

CCS Concepts
• Software and its engineering → Orchestration languages;
•Computer systems organization→Cloud computing.

Keywords
scenario language, policy enforcement, application deployment

ACMReference Format:
Robert Walther, Carsten Weinhold, Peter Amthor, and Michael Roitzsch.

2024. Multi-Stakeholder Policy Enforcement for Distributed Systems. In

10th International Workshop on Container Technologies and Container Clouds
(WoC ’24), December 2–6, 2024, Hong Kong, Hong Kong.ACM, New York, NY,

USA, 6 pages. https://doi.org/10.1145/3702637.3702958

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

WoC ’24, December 2–6, 2024, Hong Kong, Hong Kong
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1339-2/24/12

https://doi.org/10.1145/3702637.3702958

1 Introduction
In cloud environments, applications never run in complete isolation.

Instead, they depend on the operating system (OS) for access to

resources such as network and storage, as well as higher-level

services offered by the cloud platform. Beyond this interaction with

system-level components, an application may also cooperate with

other programs. It is often the case that only applications deployed

by the same user will communicate with each other. But there are

also use cases where applications owned by multiple stakeholders

must cooperate, even if they do not trust each other completely.

Deployment and Security Policies The requirements and con-

straints governing these interactions are often complex, necessitat-

ing solutions that can adapt to the evolving needs of all involved

parties. For instance, deployment policies may dictate that applica-

tions owned by different users, say Alice and Bob, must not interact

or share the sameprocessor core.As regulations or operational needs

change, these policies must evolve, adding another layer of complex-

ity. Manually configuring systems to enforce such dynamic, multi-

layered rules is not only cumbersome but prone to human error.

The Need for Automation There is a plethora of solutions that

provide run-time access control mechanisms in cloud environments.

However, to the best of our knowledge, none of them enables auto-

matic policy enforcement during the configuration and deployment

of distributed systems. In increasingly complex cloud environments,

this gap leaves these systems vulnerable to configuration errors,

which can lead to insecure or otherwise incorrect deployments.

Furthermore, it is crucial to assess the trustworthiness of applica-

tions and the services they depend on, before these components

start to communicate with each other or external entities. So far,

this assessment has largely been done through certificate checks

or remote attestation. However, on their own, these approaches lack

the ability to express nuanced security policies, because they reduce

all configuration details to an opaque hashsum.

Package managers for operating systems already solve a similar

problem for programs running on a single machine. They track

dependencies and version requirements, and some also support

sandboxing via containers. However, no comprehensive tools exist

to manage the deployment and policy enforcement for groups of

applications and services across distributed systems. A solution

that automates these processes is needed to ensure security and

functional compliance without risk of human error.

https://doi.org/10.1145/3702637.3702958
https://doi.org/10.1145/3702637.3702958


WoC ’24, December 2–6, 2024, Hong Kong, Hong Kong Robert Walther, CarstenWeinhold, Peter Amthor, andMichael Roitzsch

Gaps in Expressiveness Kubernetes and Docker allow for basic

networkor resource allocationpolicies out of the box, but theydonot

support evaluating arbitrary policies based on application metadata.

To address this limitation without altering these systems, an

abstraction layer can be added on top of the low-level configurations.

This layer enhances policy granularity by incorporating richer

metadata about applications, services, and communication channels.

Various policy languages have been developed for a wide range of

use cases, but many focus on role-based access control (RBAC). As

a result, they are limited in describing communication channels or

reasoning about attributes such as version numbers. Adapting these

languages to support deployment and communication in distributed

systems would require major modifications. In doing so, there is

a risk that language concepts and restrictions that are critical for

reasoning and formal guarantees are violated.

Contribution In this paper, we propose a comprehensive policy

enforcement mechanism for distributed systems, utilizing an

abstract system description approach. We introduce a simple and

intuitive scenario and policy description language that efficiently

expresses the communication requirements and constraints ofmulti-

program application deployments. This language is supported by a

platform-independent policy enforcement engine, which verifies if

the described scenario meets all specified requirements. The engine

operates in two distinct modes: deployment and validation.

In deployment mode, the engine checks a scenario description

against policy constraints, and if all conditions are met, it automati-

cally translates the description into a platform-specific configuration

for deployment. In validation mode, a third party can use the engine

to review a system’s scenario description to assess its compliance

with a security policy before initiating communication. The concept

enables stakeholders, including regulatory bodies and infrastructure

providers, to impose fine-grained rules on distributed systems with-

out concerning themselves with the underlying cloud infrastructure.

Paper Outline In section 2, we first discuss background and

terminology. We then describe the design of the language and the

enforcement engine (section 3–4), before we show in a case study

how our generic solution can be adapted to multiple target systems

(section 5). In section 6, we compare our solution to related work.

We conclude this paper with an outlook on future work (section 7)

and a summary (section 8).

2 Background and Terminology
In this section, we provide more information on the context and

scope of our work.

PolicyRules Weaddress the problemof automatically configuring

a computer system such that it runs one or more applications and

their required system services according to a policy.We define such a

policy as a set of rules that can express both functional requirements

and auxiliary constraints. A requirement could be that application𝐴

must be able communicate with a service 𝑆 . A constraint could be

that this application𝐴must not share a processor core with another

application 𝐵.

Multi-Stakeholders Policies Requirements and constraints can

be defined by various entities. The dependency of application𝐴 on

service 𝑆 will typically originate from the application vendor, who

knows that𝐴 cannot function without 𝑆 . But a system administrator

may need to override the minimum required version for 𝑆 , for

example, because there is a security vulnerability in previous

versions. Likewise, the constraint that applications 𝐴 and 𝐵 must

not share cores may come from the system administrator, or it could

also be demanded by a user who is wary of side-channel attacks.

Cloud providers and regulatory bodies could impose rules, too.

Wedonot answer the question ofwho takes priority, if rules set by

different stakeholders are in conflict. Such conflicts must be resolved

outside the technical domain, but detecting unsatisfiable policies

remains in scope of our work. We assume that requirements and

constraints of all stakeholders are merged into a single set of rules.

To keep the discussion in this paper focused, we therefore subsume

the roles of users, administrators, and the other stakeholders in an

abstract entity called system designer. We will refer to this entity in

the following sections, but differentiate individual roles if needed.

3 Design
Our objective is to develop a policy enforcement and configuration

generation engine. We explicitly target multi-application scenarios

with all system-level and third-party services that those applications

depend on. The system designer (subsuming multiple roles, as

detailed in section 2) provides the application scenario and the

associated policy, expressed using a description language.

Design Goals We set the following design goals for the overall

solution:

• Simplicity: The description of applications and services

to run must be simple. The same applies to the policy rules.

Both must be easy to write and read in order to minimize the

risk of configuration errors.

• Expressiveness:While maintaining simplicity, the descrip-

tion language should be expressive enough to articulate

arbitrary relationships between applications and services,

both positive and negative.

• Composability: Multiple stakeholders must be able to

provide input for the scenario description, as well as

additional policy rules. The resulting overall scenario and

policy should be composed of these individual parts.

• Separation: Both the description language and the en-

forcement engine should be platform independent and

not restricted to a single OS implementation or cloud

environment. Furthermore, policy rules should be separate

from the scenario description itself. This ensures reusability

across a variety of systems and makes sure that policy rules

can be reused for similar application scenarios.

• Extensibility: The system designer should be able to extend

the policy and configuration language without modifying the

implementation of the engine. This approach ensures that our

solution can accommodate new requirements in the future.

With these five design goals, we target the following two main

use cases. For both, the engine shall take as input: (1) a description of

the applications and services to run, and (2) a policy describing the

communication requirements and other constraints. This workflow

is illustrated in Figure 1.



Multi-Stakeholder Policy Enforcement for Distributed Systems WoC ’24, December 2–6, 2024, Hong Kong, Hong Kong

Loading Mapping Evaluation

Validation Step Generation Step

System
Configuration

(3)

(6) (4)(2)
Policy

(1) Scenario
Description

(7)

(5)
Specialization

Schema & 
Specializations

Figure 1: High-level workflow of the policy enforcement an configuration engine.

DeploymentMode For deployment, the system designer wants to

automatically check specific rules against a new scenario description

they intend to host, to prevent errors. In the deployment mode, the

engine additionally consumes a platform-specific specialization

template (3) that specifies the configuration format of the target

system. Using these three inputs, the engine enforces the policies by

either generating a conformant output configuration (4) or stopping

the process. If successful, an administrator can apply the generated

configuration directly to the target system (5).

ValidationMode In distributed computing scenarios, a commu-

nication partner may need to check if a multi-application scenario

deployed on another machine conforms to a given policy. In such

a case, this relying party receives the abstract scenario description

from the remote system. The enforcement engine runs locally

on the relying party’s machine, where it will then validate in

step (6) the received scenario description against a security policy

chosen by this party. Steps (4) and (5) can be skipped in validation

mode. The engine returns true or false, indicating whether the

scenario description complies with the relying party’s policy. In

case of compliance, communication with the remote multi-program

application can continue, or be terminated otherwise.

Trustworthiness of Deployments Both execution modes com-

plement each other and can be combined with Trusted Execution

Environments (TEEs) and remote attestation. In deployment mode,

the relying party is the system designer, with validation happening

automatically as part of the deployment process. On TEE-capable

platforms, the scenario description and the policy may be protected

against manipulation by enforcing a secure startup process. For vali-

dation performed by a remote relying party, a secure startup process

that includes the enforcement engine and the scenario description

may be required, too. It can provide evidence to the relying party that

the remotely deployed scenario does indeed reflect what is being

validated against the security policy. This kind of secure startup is or-

thogonal to the problem of describing and validating an application

scenario against a policy. It is therefore not further discussed in this

paper (but considered futurework (section 7).Weargue that our solu-

tionnotonlyenhancesmanageability throughfine-grainedpolicyen-

forcement in distributed systems but also improves trustworthiness

by enabling more detailed assessments of deployed configurations.

4 Policy Language and Enforcement Engine
We build our solution on the Lua programming language [1]

because it offers an easily embeddable, imperative languagewhich is

essential for our configuration generation process. Lua’s imperative

nature, combined with its simple yet expressive syntax also allows

nuanced policy rules to be expressed effectively. This enables us

to use a single language for both generation descriptions as well

as policy rules. In the following, we first introduce an example

deployment. We will use the applications and services from that

example to explain our scenario and policy description.

4.1 Example Scenario
Our scenario contains two applications 𝐴 and 𝐵 deployed in a

cloud environment. They interact with a database𝐷𝐵. The database

service stores data locally on the system. It is provided by company

𝐶 . As the operator of𝐷𝐵, company𝐶 restricts access to the database

to applications𝐴 and 𝐵 that have also been manufactured by𝐶 . Due

to a known vulnerability in versions of𝐴 prior to 4.0.0, application

𝐴 should only be started, if the major version is at least 4.

4.2 Scenario Description
The description of an application scenario consists of two parts:

(1) the applications and services that shall be started, and (2) a

definition of communication channels between these programs. A

configuration excerpt for our example scenario is shown in Listing 1.

Applications and Services Applications and services that shall

be run must be listed in the apps table in the scenario description

(line 1). For each program, the system designer must specify an

identifier for the program (lines 2 and 8) and the program binary

including any command-line arguments (via the args property

in line 4). The system designer may add user-defined properties

such as manufacturer (line 3) or version (line 5). These additional
properties are not part of the language, but they can be referenced

from policy rules. This satisfies the design goals for Separation and
Extensibility and is further detailed in subsection 4.3.

Communication Channels To express communication require-

ments between applications or services, our description language

provides the concept of channels. Lines 12–19 in Listing 1 describe

such a communication channel. The mandatory peers property

specifies that this channel shall be established between application𝐴

and the database𝐷𝐵 from our example. Those programs are named

using the identifiers declared under apps. The type property

(line 13) declares what kind of communication channel to use.

Specialization Channel types are abstract and not predefined

in the language. System designers can define them in a schema



WoC ’24, December 2–6, 2024, Hong Kong, Hong Kong Robert Walther, CarstenWeinhold, Peter Amthor, andMichael Roitzsch

1 apps = {
2 db = {
3 manufacturer = "company C",
4 args = "db -l -p 6789",
5 version = Ver("4.1.3")
6 },
7

8 app_a = {...}, ...
9 }
10

11 channels = {
12 app_a_db_channel = {
13 type = "channel_ipc",
14 buffer_size = "1024MB",
15 peers = {
16 app_a = { is_initiator = true },
17 db = { is_initiator = false }
18 }
19 }, ...
20 }

Listing 1: Example of scenario description

file, allowing types like datagram_ipc (e.g., bi-directional message

queue) or multiparty_ipc (e.g., shared memory between multiple

programs). In practice, the platform manufacturer provides this

schema file along with a specialization template to translate

the abstract configuration into a concrete format for the target

platform. Administrators and users only select the abstract type,

without needing to understand the underlying mechanisms. This

abstraction and specialization approach satisfies our design the

goals of Composability, Separation, and Extensibility.
Similar toapplications, thesystemdesignercanaddarbitraryprop-

erties, such as a buffer size (line 14), to channel declarations. These

properties can be either channel specific or peer specific and can be

referenced fromwithin the specialization template. For example, the

is_initiatorproperty (lines 16 and17) indicates that application𝐴
should be capable of initiating the connection and sending requests,

while the database service should only receive requests and respond.

4.3 Policy Description and Evaluation
In our description language, a policy consists of a set of rules.

Each stakeholder can contribute such rules, thereby satisfying the

Composability design goal.

Rule Types We differentiate these rules into two types: (1) appli-
cation rules and (2) channel rules. The first type is applied only to the
applications and services in the scenario description. The system

designer can use them to control if and how applications are started.

The second type of rule focuses on communication channels. The

system designer can use channel rules to restrict which applications

and services shall be allowed to interact with each other. A subset

of the rules for our example scenario are shown in Listing 2.

Peer-based Rule Filters The policy rule restricting applications

communication with the𝐷𝐵 applies only to channels between the

𝐷𝐵 and other applications. To define filters for channel rules, we

introduce the peers property (line 10 in Listing 2), which accepts a
list of program identifiers or the anywildcard tomatch any program.

For application rules, the targets property works similarly to

peers but matches identifiers individually (match any), not as

a group. Line 2 in Listing 2 specifies that the version check rule

1 app_rules.app_a_version_check = {
2 targets = { app_a },
3

4 evaluator = function ()
5 return app_a.version >= Ver("4.0.0")
6 end
7 }
8

9 channel_rules.db_version_check = {
10 peers = { db, any },
11

12 condition = function ()
13 return db.manufacturer == "company C"
14 end ,
15

16 evaluator = function ()
17 return db.manufacturer
18 == any.manufacturer
19 end
20 }

Listing 2: Example of application and channel rules

for application 𝐴 from our example scenario shall apply only to

application𝐴 rather than other programs.

Condition-based Rule Filters In addition to static rule filters

based on the peers or targets property, our policy language

also allows the system designer to formulate arbitrary filtering

criteria in an optional condition function. An example is shown

in lines 12–14 in Listing 2. For each application or channel rule that

includes a condition function, the enforcement engine executes

the Lua code in this function. If the function returns true and

targets or peers match as well, the engine will apply the rule.

Otherwise, the rule will be ignored.

Rule Evaluation All rules that remain after filtering are consid-

ered by the enforcement engine as the policy to be enforced. To

determine if a rule can be satisfied, the engine runs an evaluator
function, which the system designer provides for each rule. The

evaluator iswritten inLua and canperformarbitrary computations

on the scenario application’s and channel’s properties. It returns

true if the rule is satisfied, or false otherwise. For example, lines 17

and 18 in Listing 1 compare the version property of application

𝐴, accessed via Lua dot notation as app_a.version. We argue that

Lua’s simple syntax supports our Simplicity design goal while

offering the Expressiveness needed for complex conditions.

Mapping Our description language treats the any keyword like
a variable that can be instantiated with any program in the scenario

description. Therefore, the policy enforcement engine may have to

evaluate channel rules that use anymultiple times in order to check

all possible combinations of peers. The same is true for application

rules that use any in their targets property. We call the process of

instantiating a rule with concrete peers or targets theMapping step.
The engine performs this step before Evaluation, where it executes
all evaluator functions.

Policy Enforcement and Rule Actions Depending on the

mode, the engine performs the policy enforcement differently. In

deployment mode, it may perform the mapping and evaluation

multiple times, as shown in Figure 1. The engine exits once it found

a scenario that satisfies all requirements expressed in the rules.



Multi-Stakeholder Policy Enforcement for Distributed Systems WoC ’24, December 2–6, 2024, Hong Kong, Hong Kong

If the engine determines that the combination of all applicable

rules cannot be satisfied, it aborts with an error and no target

configuration is generated. In validation mode, the engine only

performs the checking without manipulating or generating a final

configuration, and yields only a true or false outcome.

4.4 Balancing Expressiveness and Security
Our policy enforcement engine is written in C++ but uses the Lua

interpreter to parse and evaluate input files. Lua [1], an imperative

language, is utilized in a declarative manner for the descriptive

parts and imperatively for the logic parts. To limit its functionality

to scenario and policy descriptions, we stripped down the Lua

environment, ensuring the provided Lua code runs in a sandbox

without OS [2] interaction or I/O [3] capabilities. We also disabled

external module loading. A second attack vector is rooted in the

Turing-completeness of Lua. A stakeholder could create erroneously

or out ofmalice a rule that contains an endless loop in the condition
or evaluator functions. In our prototype implementation, we

mitigate this risk by enforcing an instruction limit [4] whenever

the enforcement engine calls into such a function.

5 Case Study
We implemented a prototype of our policy enforcement engine and

tested it with M3 [5], Kubernetes [6], and Docker Compose [7]. In

accordance with our design goal for Separation, the implementation

of the policy enforcement engine itself is platform independent.

To add support for our test platforms, we assumed the role of the

system manufacturer for each of the three target platforms and

created Lua-based specialization templates for them.

M3 M3 is a microkernel-based OS with isolated user-level services

and applications. To communicate with OS services like the network

stack, explicit channels must be configured. The M3 platform relies

on dedicated hardware support [8] to enforce both isolation and

communication control. As multi-program scenarios are native to

M3 and because of its strong isolation, deny-by-default approach, we

argue that it is an ideal testbed for our policy enforcement solution,

even though it primarily targets embedded platforms. Furthermore

the platform is fully open-source
1
, including a hardware simulator

for testing. Using the scenario from subsection 4.2 and policy 4.3, we

generated anM3 boot.xmlfile specifying programbinaries and com-

munication channels. Each application is placed on a dedicated core

and the provided command-line arguments are passed to it. Com-

munication channels are translated to M3’s send and receive gates.

Kubernetes Kubernetes [6] manages containerized applications

by organizing them into services composed of interacting compo-

nents named pods. It handles communication between pods through

software-defined networking, enabling applications and services

to interact across multiple machines. Since Kubernetes is a leading

platform for orchestrating scalable and reliable distributed systems,

we test our policy enforcement engine within this environment.

Using our Kubernetes specialization template, the engine generates

a loadable YAML configuration by translating our abstract program

and channel descriptions into Kubernetes services. Communication

channels are expressed through Kubernetes network policies [9],

1
https://github.com/Barkhausen-Institut/M3

which enable communication between applications and services

according to the given security policy.

Docker Compose Docker Compose is a tool for defining and run-

ning multi-container Docker applications. It uses a YAML file to

describe services and networks, enabling the interaction of different
containers. Docker Compose simplifies managing service dependen-

cies, controlling networking, and scaling applications by running all

components together in isolated yet interconnected environments.

To support this third platform, our specialization template for this

platformmaps our abstract application scenario to Docker Compose

services. Since the concept of communication channels doesnot exist

in Docker Compose, we define separate networks. Each channel is

mapped to a distinct network, with each communication partner as-

signed to the corresponding network [10]. This ensures that only ap-

plications intended to communicatewith each other are able to do so.

6 RelatedWork
The scenario and policy description language is the core part of the

work we present in this paper. Hence, we focus our discussion of

related work on similar languages.

Markup Languages Markup languages offer a clear way to

express and structure data, which is especially suitable for policy

languages. Kubernetes, a prominent container orchestration

platform, utilizes YAML to express network policies [9], regulating

communication between applications and external endpoints. In

contrast, XACML [11] is an XML-based language for run-time

enforcement of Attribute-Based Access Control (ABAC) policies.

Both solutions allow to filter rules, with complex rule expressions.

However, Kubernetes YAML has a clear focus on network policies

and is thus not directly applicable to our system configuration use

case, where we also need to reason about attributes of individual

programs. XACML can express a versatile range of policies, but this

adds unneeded complexity for system configuration. Our Lua-based

approach on the other hand, though more readable and easier to

maintain, lacks the breadth of use cases that XACML supports.

Declarative Policy Languages Open Policy Agent (OPA) [12]

employs the Rego language [13] to decouple decision-making from

enforcement by evaluating JSON input data against rules. Another

declarative language is Cedar [14], which is focused on fast eval-

uation of Role-Based Access Control (RBAC) and ABAC semantics.

It is used, for example, in Amazon AWS Verified Access [15]. As

declarative languages, they aim to simplify policy description

and enhance readability. While OPA achieves this through logical

“and” concatenation, our approach based on Lua offers flexibility

in handling more complex statements within single rules. Cedar

is tailored to run-time access control and thus may be an alternative

for expressing policies. However, our work also targets application

deployment and therefore requires additional flexibility, including

support for imperative programming in the specialization templates.

Our solution combines the flexibility of imperative programming

with the ease of use of declarative descriptions. Specifically, system

designers must describe applications, services, and policy rules

in a declarative way in the form of nested dictionaries in the Lua

language. However, unlike Cedar, our Lua-based approach currently

does not allow formal verification.

https://github.com/Barkhausen-Institut/M3


WoC ’24, December 2–6, 2024, Hong Kong, Hong Kong Robert Walther, CarstenWeinhold, Peter Amthor, andMichael Roitzsch

As another example from the class of declarative policy lan-

guages, Ponder [16] supports co-design and co-specification of

both management and access control policies. It supports both

run-time enforcement rules and structural declaration along with

composition rules for their interdependencies. Ponder can support

multiple stakeholders with possibly conflicting goals, but lacking

ABAC semantics, it is not directly applicable to this work. Finally,

DynaMo [17] is a language that allows to specify and formally

analyze arbitrary access control policies based on a superset of

ABAC semantics (DABAC[18]), but does not address the system

configuration use case. Nevertheless, as soon as policy analysis

receives more attention, DynaMo might become relevant in

designing a more specialized Lua replacement in future work.

7 FutureWork
We plan to continue our work in two major areas: (1) to support

distributed systems with remote attestation, and (2) by employing

formal methods.

TEEs and Remote Attestation Modern security platforms utilize

Trusted Execution Environments (TEEs) to isolate applications from

one another and, to some extent, from the underlying operating

system. TEE-enabled platforms support remote attestation, allowing

systems to provide verifiable evidence of the software running on

them. Using our description language, remote systems can describe

the applications and services running in their TEEs, along with

the communication channels between them. Our enforcement

engine, running on the verifying system, would validate this

scenario description against a policy it considers acceptable. This

description would complement the attestation evidence, which

includes executable code measurements and TEE configurations.

Additionally, our system could be expanded to deploy multi-

application scenarios across multiple systems in such a way, that it

automatically creates cryptographically protected communication

channels between remote TEEs. Remote attestation could also prove

that these channels terminate in the correct TEEs.

Formalization of Policy Enforcement The second major area

of future work focuses on formal methods to reason about (1) policy

correctness, such as least-privilege compliance or prevention of

unintended information flows [19], and (2) policy satisfiability.

These properties need to be formally defined and embedded into

our framework. As a side-product of such methods, we expect that

a specialized declarative policy language will be required to replace

Lua. Its underlying formal model should then unlock existing or

new verification approaches (e.g. graph-based analysis of constraint

dependencies [20] or workflow satisfiability analysis [21]).

8 Conclusion
In this paper, we presented a holistic approach that addresses

both the automatic deployment of applications in distributed

systems under a given security policy and the verification of

third-party system trustworthiness. Our solution consists of two

parts: (1) a description language, in which software vendors, system

administrators, or users can describe what applications and services

to run, along with policy rules, and (2) an enforcement engine

that checks if the deployment scenario complies with the security

policy. The description language is based on Lua, which is easy to

write and understand, but also flexible enough to express arbitrary

rules for policing communication and resource assignment for

the target systems. Furthermore, the description language and

the enforcement engine are platform independent. They can be

adapted to a concrete target system via specialization templates also

written in Lua. We demonstrated that capability by generating a

working startup configuration for the M3 microkernel platform and

YAML-based configurations for Kubernetes and Docker Compose.

9 Acknowledgements
This research is funded by the European Union’s Horizon Europe

research and innovation program under grant agreement No.

101094218 (CYMEDSEC) and No. 101092598 (COREnext). It is also

financed on the basis of the budget passed by the Saxon State

Parliament in Germany.

References
[1] The Programming Language Lua. https://www.lua.org/. (Accessed: Oct 2024).

[2] Programming in Lua - Sec. 22.2: Other System Calls. https://www.lua.org/pil/22.2.

html. (Accessed: Oct 2024).

[3] Programming in Lua - Ch. 21: The I/O Library. https://www.lua.org/pil/21.html.

(Accessed: Oct 2024).

[4] Lua 5.3 Reference Manual - Sec. 6.10: The Debug Library. https://www.lua.org/

manual/5.3/manual.html#6.10. (Accessed: Oct 2024).

[5] Nils Asmussen, Marcus Völp, Benedikt Nöthen, Hermann Härtig, and Gerhard

Fettweis. M3: A Hardware/Operating-System Co-Design to Tame Heterogeneous

Manycores. In 21st International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pages 189–203. ACM,

March 2016.

[6] Kubernetes. https://kubernetes.io/. (Accessed: Oct 2024).

[7] Docker compose. https://docs.docker.com/compose/. (Accessed: Oct 2024).

[8] Nils Asmussen, Sebastian Haas, Carsten Weinhold, Till Miemietz, and Michael

Roitzsch. Efficient and Scalable Core Multiplexing with M3v. In 27th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 452–466. ACM, February 2022.

[9] Kubernetes Documentation: Network Policies. https://kubernetes.io/docs/

concepts/services-networking/network-policies/. (Accessed: Oct 2024).

[10] Overlay network driver. https://docs.docker.com/engine/network/drivers/

overlay/. (Accessed: September 2024).

[11] OASIS Standard. eXtensible Access Control Markup Language (XACML) Version

3.0. https://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html,

January 2013.

[12] Open Policy Agent. https://www.openpolicyagent.org/. (Accessed: Oct 2024).

[13] Open Policy Agent: Policy Language. https://www.openpolicyagent.org/docs/

latest/policy-language/. (Accessed: Oct 2024).

[14] Cedar Language. https://www.cedarpolicy.com/. (Accessed: Oct 2024).

[15] Secure Remote Access - AWS Verified Access - AWS. https://aws.amazon.com/

verified-access/. (Accessed: Oct 2024).

[16] Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris Sloman. The Pon-

der Policy Specification Language. InMorris Sloman, Emil C. Lupu, and Jorge Lobo,

editors, Policies for Distributed Systems and Networks, pages 18–38. Springer, 2001.
[17] Peter Amthor andMarius Schlegel. Towards Language Support for Model-based

Security Policy Engineering. In Pierangela Samarati et al., editor, 17th International
Conference on Security and Cryptography, SECRYPT ’20, pages 513–521. INSTICC,

SciTePress, 2020.

[18] Marius Schlegel and Peter Amthor. Putting the Pieces Together: Model-Based

Engineering Workflows for Attribute-Based Access Control Policies. In

Pierangela Samarati et al., editor, E-Business and Telecommunications, volume 1795

of Communications in Computer and Information Science (CCIS), pages 249–280.
Springer Nature, 2023.

[19] Luigi Logrippo. Logical method for reasoning about access control and data flow

control models. In Frédéric Cuppens et al., editor, Foundations and Practice of
Security, pages 205–220. Springer, 2015.

[20] PeterAmthorandMartinRabe. CommandDependencies inHeuristic SafetyAnaly-

sis ofAccessControlModels. InAbdelmalekBenzekri et al., editor, Foundations and
Practice of Security (FPS ’19), volume 12056 of LNCS, pages 207–224. Springer, 2020.

[21] Arif Khan and Philip Fong. Satisfiability and Feasibility in a Relationship-Based

Workflow Authorization Model. In Sara Foresti, Moti Yung, and Fabio Martinelli,

editors, Computer Security – ESORICS 2012, volume 7459 of LNCS, pages 109–126.
Springer, 2012.

https://www.lua.org/
https://www.lua.org/pil/22.2.html
https://www.lua.org/pil/22.2.html
https://www.lua.org/pil/21.html
https://www.lua.org/manual/5.3/manual.html#6.10
https://www.lua.org/manual/5.3/manual.html#6.10
https://kubernetes.io/
https://docs.docker.com/compose/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://docs.docker.com/engine/network/drivers/overlay/
https://docs.docker.com/engine/network/drivers/overlay/
https://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
https://www.openpolicyagent.org/
https://www.openpolicyagent.org/docs/latest/policy-language/
https://www.openpolicyagent.org/docs/latest/policy-language/
https://www.cedarpolicy.com/
https://aws.amazon.com/verified-access/
https://aws.amazon.com/verified-access/

	Abstract
	1 Introduction
	2 Background and Terminology
	3 Design
	4 Policy Language and Enforcement Engine
	4.1 Example Scenario
	4.2 Scenario Description
	4.3 Policy Description and Evaluation
	4.4 Balancing Expressiveness and Security

	5 Case Study
	6 Related Work
	7 Future Work
	8 Conclusion
	9 Acknowledgements
	References

