
Robust and Immediate Resource Reclamation withM3
Viktor Reusch

viktor.reusch@barkhauseninstitut.org
Barkhausen Institut

Dresden, Germany

Nils Asmussen

nils.asmussen@barkhauseninstitut.org
Barkhausen Institut

Dresden, Germany

Michael Roitzsch

michael.roitzsch@barkhauseninstitut.org
Barkhausen Institut

Dresden, Germany

Abstract
Asynchronous programming is a very helpful programming

methodologyforsystemswithmanythreadsand long-running

I/O.However, caremustbe taken if systems, e.g., kernels,work

with objects that can be dynamically created, used, and de-

stroyed by asynchronous tasks. The typical approach keeps

an object alive until all tasks are done with it. However, this

can lead to long delays until resources can be reclaimed and

performs useless work on already destroyed objects.

This paper proposes a new set of abstractions for object ref-

erences that enables an immediate resource reclamation. We

build upon the Rust programming language and use a combi-

nation of static analysis and runtime checks to guarantee that

suspended tasks do not keep objects alive. We additionally

leverage language features to ensure that destroyed objects

cannot be accessed anymore, making it robust. We perform a

case studywith theM3 kernel, which hasmany asynchronous

system calls andmanages shared kernel objects. In the evalua-

tion,we show that our approach incurs amodest performance

overhead even for system-call heavy workloads.

ACMReference Format:
Viktor Reusch, Nils Asmussen, and Michael Roitzsch. 2024. Robust

and Immediate Resource Reclamation with M3. In 2nd Workshop
on Kernel Isolation, Safety and Verification (KISV ’24), November
4–6, 2024, Austin, TX, USA. ACM, New York, NY, USA, 7 pages.

https://doi.org/10.1145/3698576.3698763

1 Introduction
Asynchronous programming is a popular technique to hide

I/O latency and to increase the number of requests processed

concurrently, thus improving throughput. For that reason, we

observe its adoption in modern programming languages [7],

frameworks [18], software [10], and operating system ker-

nels [1]. On a fundamental level, “asynchronous” means that

an executed task is suspended after starting an I/O request

and resumed only after the I/O operation is finished. In the

meantime, the underlying thread can continue to execute

other tasks until they invoke an asynchronous operation as

Permission tomakedigitalorhardcopiesofallorpartof thiswork forpersonal

or classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice

and the full citation on the first page. Copyrights for third-party components

of this workmust be honored. For all other uses, contact the owner/author(s).

KISV ’24, November 4–6, 2024, Austin, TX, USA
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1301-9/24/11

https://doi.org/10.1145/3698576.3698763

well. Thus, multiple tasks can concurrently make progress

while others are blocked.

While increasing throughput, this programming method-

ology also introduces additional complexity. For example,

working on shared objects across asynchronous invocations

is not trivial if objects are created and destroyed dynamically.

Due to the concurrent nature of asynchronous programming,

object references that were retrieved before awaiting an asyn-

chronous callmaybe invalid once theprogramflowcontinues.

Other tasks could have destroyed the referenced objects in the

meantime. To avoid dereferencing dangling pointers and use-

after-free, one might employ reference counting or garbage

collection. However, these techniques have multiple down-

sides. First,while taskswait for I/Ocompletion, theyalsodelay

the destruction of objects and thus the reclamation of associ-

ated resources. This problem is exacerbated when tasks wait

for responses from untrusted communication partners for

potentially arbitrarily long periods of time. As a consequence,

there canbe a largegapbetween thepoint of the intendeddele-

tion of an object and the actual reclamation of the resources.

Second, tasksmightperformuselessworkonobjects thathave

already been logically deleted while they were suspended.

Theseobjects aredeallocatedat theendof the current function

anyway. In the big picture, this implies that systems require

more memory to accommodate the lingering objects or else

allocations have towait formemory resources to be reclaimed.

Incontrast, immediate resource reclamationenables systems

to operate with constrainedmemory resources while keeping

high performance. We propose using a reliable way to detect

that objects are gone instead of keeping them alive while

referenced. This makes it possible to free object resources im-

mediately. However, this methodology also introduces a new

set of possible programming mistakes. Thus, our proposed

abstractions are designed to be robust by employing language,

compile-time, and runtime checks that prevent common pro-

gramming mistakes.

We explore this idea of immediate resource reclamation

and detection of gone objects in a case study with M3 [2]. M3

is a hardware/operating-system co-design for heterogeneous

many-core systems. It is specifically designed to support un-

trusted cores and accelerators. M3 runs a single microkernel

on a dedicated, trusted core. The other (potentially untrusted)

cores are managed by per-core multiplexers. The single M3

kernel handles all system calls but needs to send instructions

to the per-core multiplexers to change core-local state like

page tables. These instructions are transmitted using asyn-

chronousmessage passing based on cooperative threads. Like

https://orcid.org/0009-0009-0989-4737
https://orcid.org/0000-0002-4232-4519
https://orcid.org/0000-0002-2416-6537
https://doi.org/10.1145/3698576.3698763
https://doi.org/10.1145/3698576.3698763


KISV ’24, November 4–6, 2024, Austin, TX, USA Viktor Reusch, Nils Asmussen, andMichael Roitzsch

othermicrokernels, theM3kernel keeps state in formofkernel

objects and provides applications access to them via capabil-

ities. This combination of asynchronous programming and

dynamic object management makes the M3 kernel a good fit

for our case study on resource reclamation.

This paper contributes the design of a set of abstractions

for object references that is robust, preventing programming

mistakes, and allows for immediate reclamation of object

resources. We perform a case study by adding an implemen-

tation of the proposed abstraction to the asynchronous M3

kernel. Last but not least, we contribute a performance eval-

uation of our approach.

2 Design
We design smart abstractions for object references that work

in the context of asynchronous computation. The design fol-

lows three goals. First, the design must be safe. It should not
be possible to provoke use-after-free or other memory safety

bugs. Second, we require immediate reclamation of object re-
sources, i.e., references in other tasks need be become invalid

once an object is destroyed. Last but not least, the design has

to be robust. The two guarantees above must not break due

to simple programming mistakes.

2.1 Existing Guarantees FromRust
TheM3microkernel is written in Rust [14]. Rust is a memory-

safe programming language without any runtime or garbage

collector. Thus, Rust is goodfit forwriting theM3microkernel

in terms of safety, reliability, and speed.

Important safety properties of Rust are enforced by the bor-

row checker [11]. This compile-time analysis tool tracks own-

ership of values across variables, the state and kind of refer-

ences to these values, andwhenand throughwhich references

values are accessed. Most importantly for us, Rust forbids de-

stroying objects while still holding references derived from

them.This guarantees that references donot becomedangling

and that use-after-free cannot happen. In the context of our

work, the borrowchecker prevents kernel code fromreleasing

reference counters or discarding object guardswhile still hold-

ing on to references to (parts of) kernel objects. Thus, refer-

ence counting and other runtime checks on object references

can be constructed in a robustway assuring safety guarantees.

2.2 Runtime Checks
Rust does not enforce all guarantees needed to implement our

approach of immediate resource reclamation. Most impor-

tantly, we require that kernel objects can be released at any

time. This requires that suspended tasks cannot hold object

references. However, there is no compile-time guarantee that

could be used to assure that object references are not held

across asynchronous calls.

Thus, we introduce runtime checks that track the objects

queried from the internal object collections. If a reference

to such an object is still live when attempting a task switch,

an error message is printed and the kernel is aborted. This

assures that tasks do not rely on object references being valid

across asynchronous calls and guarantees that objects can be

freed at the intended moment to reclaim resources.

2.3 Static Analysis
In addition to the guarantees provided by Rust and runtime

checks, static analysis can be used tomake further assurances

about the source code. These checks run at compile time and

do not influence runtime performance. We want to clearly

highlight which code paths might lead to asynchronous calls

and therefore require particular attention. The highlighting

is particularly useful as developers have to make sure that no

object references are held across asynchronous calls to avoid

system aborts. Knowing when these calls might happen is

therefore essential. We have defined precise rules regarding

which functions are allowed to perform asynchronous calls:

• Every function that directly suspends the current task and

allows other tasks to be scheduled must be suffixed with

_async (subsequently referred to as async). The _async
suffix is a clear indication of possible concurrency to the

programmer. We have decided against introducing a new

keyword or special syntax for async functions. These ap-

proaches would be incompatible with existing Rust tooling.

• Transitively, every function that invokes anasync function

must also be suffixed with _async.
• All other functions, which do not perform asynchronous

operations, must not be suffixed.

• We also need to prevent async functions from being used

under a different name or without a name. Hence, we do

not allow pointers to async function to be passed around

or stored and do not allow async functions to be used in

closures.

Note that the static analysis is not strictly necessary if Rust’s

async/await feature is used. However, it is required if asyn-
chronicity is for example provided based on green threads as

in our case study (see Section 3.1.3 for details).

2.4 CustomReference Abstractions
We introduce three abstractions for object references based

on traditional reference counting but specifically tailored to

work with objects across asynchronous calls:

StrongRc The StrongRc effectively behaves like a reference
in traditional referencecounting.Whileat leastone“strong”

reference to an object is held, the object is kept alive. This

reference type is used inside the kernel’s object collections.

Naturally, these references are allowed to exist across asyn-

chronous calls, which is not a violation of our approach as

tasks cannot hold StrongRc references directly.
TempRc Whenever a task wants to access a kernel object, it

retrieves a reference from a collection. The retrieved refer-

ences will be of type TempRc, not StrongRc. This kind of
reference is not allowed to be held across asynchronous



Robust and Immediate Resource Reclamation withM3 KISV ’24, November 4–6, 2024, Austin, TX, USA

StrongRc

0 1 2 3Selector

Capability

Object A Object B

WeakRc

×

×

Application

Kernel
Heap

Kernel Task Stack

Figure 1. Applications access kernel objects through

selectors and capabilities. Selectors can be reused with new

capabilities pointing to different objects. Though, weak

references can only ever get invalidated.

calls, which is enforced via runtime checks. Thus, concur-

rent tasks can destroy objects knowing that no other task

can still hold a TempRc.
WeakRc The third reference type isWeakRc,whichbehaves like

a weak reference in ordinary reference counting and can

be held across asynchronous calls. “Weak” references are

created by downgrading TempRcs. They must be upgraded

again after asynchronous calls to access the object. The

upgrade only succeeds if the object is still alive.

One could assume that the WeakRc abstraction is unneces-
sary as the kernel could simply query for the same TempRc
again after an asynchronous call. However, a newobject could

use the same selector after the original object occupying this

slot had been destroyed. Thus, a query using the same selector

might yield a reference to a different, unexpected object. A

visualization is given in Figure 1 using the data structures

of the M3 kernel as an example. Weak references avoid this

problem elegantly by always staying invalid after the object

has been destroyed.

2.5 Invalidation ofWeak References
The abstraction ofweak references also comes in handywhen

objects are being destructed. Some objects might perform

asynchronous I/O during their destruction.While the destruc-

ting task is suspended, other tasks could observe and even

manipulate the object under destruction, which can easily

lead to bugs. Our approach solves this problem by assuring

that objects are not reachable once destruction starts, i.e.,

weak references become invalid. Our abstraction of WeakRc
makes it possible to forcefully invalidate all weak references

even if a strong reference still exists. The forceful invalidation

assures that objects are not modified during destruction and

that other tasks that still reference such objects abort early.

2.6 Object Mutations
Similar to object destruction, some use cases might require

that tasks abort when referenced objects have been mutated.

For example, kernel tasks might want to abort a system call

when a referenced application changed its state from run-
ning to stopped. To prevent tasks from continuing to work

withmutated objects, we could introduce another abstraction,

StableRc. It behaves like a WeakRc but is invalidated not only
on object destruction but alsowhenever the object ismodified.

Modifications can be detected by combining StableRcwith,
for example, RefCell [13]. However, the StableRc abstrac-
tion might not be useful in all scenarios. For instance, we had

no use for this particular abstraction in M3.

3 Case Study withM3

We evaluate the practicality of our proposed design by mod-

ifying the M3 kernel. This kernel makes heavy use of asyn-

chronous programming and resource reclamation. It is thus

a prime target for our study.

3.1 Background onM3

M3 is a hardware/operating-system co-design developed for

heterogeneous systems. It specifically supports untrusted

cores and accelerators in a tiled hardware architecture.

3.1.1 Basic Architecture. The processing cores and ac-

celerators in M3 are separated into individual tiles. Each of

them is connected to a data transfer unit (DTU), which inter-

poses the communication and the memory accesses of each

tile. The DTU offers a unified memory and inter-process com-

munication (IPC) interface, which is especially helpful on

heterogeneous systems like M3. Furthermore, it enforces se-

curity policies by controlling which memory a tile can access

and with whom it can communicate.

3.1.2 Split in Kernel and TileMux. The DTUs have to be
programmed by a trusted entity in the system to uphold the

promised security. This instance is the M3 kernel, which runs

on a separate, single-core tile and is the only entity privileged

to program the DTUs.

The M3 system also supports sharing tiles with multiple

applications. Every CPU tile runs a local multiplexer called

Tilemux. The multiplexer preempts applications running on

the local tile and switches between application threads fol-

lowing a scheduling policy. Nevertheless, all management

is still performed by the single M3 kernel, which has the full

control of the system. The kernel regularly needs to com-

municate with the Tilemux instances to start applications,

change scheduling parameters, and alter page tables. Thus,

asynchronous calls are an important building block of the M3

kernel, making it a good candidate for our case study.

3.1.3 Green Threads vs. Async/Await. Kernel tasks reg-
ularly wait for some event during system-call handling. They



KISV ’24, November 4–6, 2024, Austin, TX, USA Viktor Reusch, Nils Asmussen, andMichael Roitzsch

might wait for answers from Tilemux or for semaphore coun-

ters to be incremented. While kernel tasks are suspended, M3

uses the available compute resources to handle system calls of

other processes. It employs stack-based threads on top of a sin-

gle hardware thread to achieve CPUmultiplexing. This setup

is very similar to thewell-knowngreen threads ofmany appli-

cation frameworks. Thus, we also call the M3 kernel threads

“green threads”. Each green thread has its own stack allocated

from kernel memory, which is also used to store the register

state of threads. Switching tasks is as simple as pushing the

registers of the current thread to the stack, loading the stack

pointer of the other green thread, and popping its registers.

This approach is notably different from the async/await
feature of Rust [9]. In Rust, async/await transforms code ap-

pearing synchronous into a statemachine. This statemachine

allows to execute the asynchronous functions step-by-step, al-

waysyieldingwhen thecodeneeds towait for someevent.The

constructed state machine also internalizes local variables,

whichmakes a separate stackunnecessary.However, the state

machine and all the runtime handling turns out to be more

heavy weight and yields worse performance than the green

threads in case of theM3 kernel. Nonetheless, we assume that

our design for resource reclamation in asynchronous code

would apply to a state-machine based implementation.

3.1.4 Capabilities and Kernel Objects. The M3 kernel

provides applications with a mechanism for configuring the

DTUs. These configurations of the DTU are abstracted as

kernel objects like send, receive, or memory gates for IPC

and memory access. As typical for microkernels, access to

resources and kernel objects is guarded by a capability sys-

tem. Each application has its own set of capabilities, which

are stored inside the kernel and point to kernel objects. Appli-

cations can neither manipulate nor forge capabilities directly.

Instead, applications only indirectly refer to capabilities by a

selector, which indexes into their associated capability space
in the kernel. This indirection is depicted in Figure 1. The

permissions that an application possesses are dictated by the

capabilities in its associated capability space. Furthermore,

applications can delegate capabilities to other applications to

grant them access to the associated resource too.

As many other capability systems, M3 also supports revo-

cation of delegated capabilities. Revocation denies access to

resources and reclaims kernel memory quota. The revoca-

tion operation can also lead to kernel objects being destroyed

when the last capability pointing to them is gone. The com-

bination of revocation and the asynchronous nature of M3

system calls implies that kernel objects can vanishwhile tasks

are suspended. To avoid this, M3, so far, kept strong refer-

ence in kernel tasks during system calls. However, keeping

strong references has major disadvantages, as mentioned in

the introduction. For example, the previous version had a bug

that lead to a configured communication channel even if the

object it was based upon had been destroyed during an async

Listing 1. Simplified example of creating and using a

semaphore (capability) in the M3 kernel.

let sem: StrongRc <Semaphore > = Semaphore::new();

current_activity.insert_cap(selector ,

Capability::new(sem));

let sem: TempRc <Semaphore > =

current_activity.get_cap(selector).object();

let sem: WeakRc <Semaphore > = sem.downgrade();

some_function_async();

let sem: TempRc <Semaphore > = sem.upgrade()?;

call. The modified M3 prevents this bug by design, because

references need to be downgraded before async calls and

upgraded afterwards, which detects destructions reliably.

3.2 Implementation
To implement our design, we extended the M3 project both

at compile and at run time.

3.2.1 Static Analysis. To perform static analysis, wemake

use of theDylint linting tool [8]. This tools allows towrite cus-
tom Rust lints similar to the standard Clippy [12] lints. Lints
canmake use of the rustc [17]-internal data structures, i.e., the
same structures the Rust compiler uses, to find problematic

source code and suggest fixes.

We created three custom lints for our static analysis:

1. The first lint asserts that async functions are only used

inside of functions with the suffix _async. Our linter there-
fore visits every regular function in the rustc-internal ab-

stract syntax tree and checks the suffix of every called

function. This lint also applies to closures, checking that

they contain no async invocations too.

2. In a similar way, another lint checks that async functions

actually contain at least one invocation of an async func-

tion.

3. Last but not least, a third lint checks that path expressions

with names of async functions are only ever used directly

as the called side of a function call expression. This effec-

tively prohibits any storing, moving, or passing around of

pointers to async functions as asked for in Section 2.3.

3.2.2 Abstractions. For our case study with M3 we imple-

ment the threeabstractionsproposed inSection2.4,StrongRc,
TempRc, and WeakRc. Listing 1 presents an example on how

these abstractions are used in the M3 kernel.

We have opted for writing our own reference counting

instead of relying on Rust’s standard library [15]. This way,

we can manually invalidate weak references and have more

control over the memory footprint of destroyed objects. The

weak references of the standard library [16] directly point to

the allocated structure on the heap, which contains the object

itself, the strong, and the weak reference counters. Thus, one

can only reclaim the memory allocated for a kernel object

when all strong and weak references are gone. However, for



Robust and Immediate Resource Reclamation withM3 KISV ’24, November 4–6, 2024, Austin, TX, USA

StrongRc

Collection X

RcBox
Object • StrongCtr

WeakLink
WeakCtr

TempRc WeakRc

Task S

suspended

Task C

current

×

downgrade
TempCtr - -

upgrade
TempCtr++

query
TempCtr++

destroy

Figure 2. Internal data structures of the proposed design. A
reference to a kernel object is queried from a collection, yield-

ing a TempRc. A global counter is incremented to track active

references.TheTempRccanbedowngraded toaWeakRc, decre-
menting the counter. A WeakRc is only an indirect reference to
the object and canbe invalidatedwhen the object is destroyed.

theM3 kernelwewant to be able to free the kernelmemory as-

sociatedwithanobject as soonaspossible.ApplicationsonM3

pay for kernel memory that is allocated for them using their

associated kernelmemory quota.Hence, theM3kernel should

give back quota spent on kernel objects as soon as possible.

Our implementation allocates a small indirection object, a

WeakLink, for everykernel object.WeakRcspoint toWeakLink
structures, which in turn point to the actual kernel objects.

The interlinking between all the structures is visualized in

Figure 2. Kernel objects can be freed even when there are still

some weak references. The associated WeakLinks are simply

invalidated, which makes future upgrades of WeakRcs fail.
The memory quota spent for kernel objects can be given back

to the application immediately when all StrongRcs are gone.
There is only a small amount of memory still allocated for the

WeakLink, which we account to the kernel memory of a task

object. A task can only hold a limited number of WeakRcs and
thus can keep only a limited number of WeakLinks alive.

Our abstractionsmust alsomake sure that a TempRc cannot
be held when a task is suspended and that a task cannot gain

access to a StrongRc form a kernel-internal collection. The

first invariant is enforced using a global counter that is incre-

mented when constructing a TempRc from a StrongRc or by
upgrading a WeakRc. The counter is decremented when de-

stroying theTempRcagain.Whenswitching tasks, this counter

is checked to be zero. For the second invariant, we have mod-

ified our kernel-internal collections to only ever give out

TempRcs although they internally keep StrongRcs.

3.2.3 Notification About Object Destruction. The pro-
posed reference counting system can also be used to wake

suspended tasks up. The M3 kernel has some system calls

that might suspend a task arbitrarily long, for example, decre-

menting a semaphore or waiting for a child process to exit.

These tasks are usually woken up by the expected event, like

when the semaphore counter is increased. However, when an

associated object is destroyed, the task might never wake up

agin. For example, destroying the semaphore kernel object

would leave the waiting task without any possibility to wake

up. Thus, M3 wakes tasks up when associated kernel objects

are destroyed. Whenever a kernel task waits for an event, it

can also register relevant WeakRcs. If one of these WeakRcs
becomes invalid, the waiting task is woken up. It can now

abort the system call as it has become unfulfillable.

4 Evaluation
As our design introduces runtime overhead to enable im-

mediate resource reclamation, our evaluation quantifies this

overhead. We start with microbenchmarks that study the im-

pact on system call performance, followed by the overhead

for application launches.

4.1 Evaluation Platform
We use the existing FPGA platform of M3, which is imple-

mented on a Xilinx Virtex UltraScale+ FPGA (VCU118 board).

We put eight processing tiles with a single RISC-V core each

onto this FPGA platform. Additionally, we use twomemory

tiles to access external DDR4 DRAM. All tiles are connected

by a NoC using a 2x2 star-mesh topology. The platform uses

Rocket cores and BOOM cores as the RISC-V cores. Rocket is

a 64-bit RISC-V in-order core with MMU and 16 kB L1 cache

and a 512 kB L2 cache. BOOM is the out-of-order variant of

Rocket with the same cache configuration. The clock frequen-

cies of the Rocket and BOOM cores are set to 100 MHz and 80

MHz, respectively, to fully meet timing requirements during

FPGA synthesis and place-and-route. The M3 kernel runs on

a Rocket core, whereas all benchmarks in this evaluation run

on BOOM cores.

4.2 Performance Impact on Syscalls
We start with microbenchmarks to better understand the per-

formance impact of our proposed design. We measure the la-

tency of several system calls supported byM3. In general, sys-

tem calls on M3 are implemented with message passing. That

is, the application marshalls a message, sends it to the kernel,

which unmarshalls the message, handles the system call ac-

cordingly, andsendsa reply to theapplication.Ourbenchmark

thereforemeasures the time for this entireprocedure fordiffer-

ent system calls. To explain the implications of our design, we

compare three variants: 1) holding strong references during

async calls, as was done byM3 previously, 2) downgrading to

weak references during async calls, but using the implemen-

tation from std::rc, and 3) downgrading to weak references
using our reference-counting implementation. In contrast to

the third variant, the second variant does not allow to free

the memory until the last strong and weak reference is gone.
We perform each system call 1000 times after 100 warmup

calls and show the average latency including standard devia-

tion in Figure 3. As can be seen, most system calls experience



KISV ’24, November 4–6, 2024, Austin, TX, USA Viktor Reusch, Nils Asmussen, andMichael Roitzsch

0

2

4

6

8

no
op

ac
tiv

at
e

cr
ea

te
_r

ga
te

cr
ea

te
_s

ga
te

m
ap

_a
sy

nc

de
riv

e_
m

em

ex
ch

an
ge

re
vo

ke

L
a
te

n
c
y
 (

K
 c

y
c
le

s)

Strong

Weak-std

Weak

Figure 3. System call latencies with strong references

(“Strong”), weak references using std::rc (“Weak-std”), and

our custom reference-counting types (“Weak”).

0 1 2

Latency (ms)

Strong

Weak-std

Weak

Figure 4. Application start and teardown performance

with strong references (“Strong”), standard weak references

(“Weak-std”), and customweak references (“Weak”).

a modest slowdown (up to 4.6%). However, the asynchro-

nous map_async syscall is 7.2% slowerwith “Weak” compared

to “Strong”. The reason is that this syscall involves several

TempRcs that are downgraded before the async call to Tile-
Mux, which is instructed by the kernel to insert page-table

entries. We also observe that the additional allocation that

is required for our custom reference counter does not lead

to significantly more overhead. In some cases, the “Weak”

variant is even faster than “Weak-std”, which is due to specific

optimizations for the usage within the M3 kernel.

4.3 Application Start and Teardown
After quantifying the overhead for system calls, we asked

howmuch application performance would degrade. We ran

a complex leveldb workload – involving pager, filesystem,

and network stack – but this lead to almost identical results

for all three variants. The reason is the design of M3 where

applications access OS services like file systems and network

stacks directly viaDTUswithout involving the kernel. System

calls are primarily used during application start and teardown

phases to establish the DTU-based communication channels

that are used during runtime. For that reason, we decided to

measure the impact on application launches instead.

The benchmark creates a new process, establishes mem-

ory mappings via the pager for code, data, stack, and heap

and starts the application. The application consists of an

empty main function. The benchmark waits until the appli-

cation exited and destroys the process afterwards. For that

reason, several system calls are required for process creation,

communication-channel setup, and their revocation after-

wards.We use four runs after twowarmup runs and show the

results in Figure 4. As can be seen, even for workloads that

involve system calls, the performance overhead is relatively

low (1.5%).

5 RelatedWork
To the best of our knowledge, there is no previous work that

tries to solve the same problem as this paper. Nevertheless,

there is relatedwork that discusses the topic of resource recla-

mation [4], robust asynchronous code [6], and kernel object

lifetimes [3]. Furthermore, there are also well-known related

concepts that our approach can be compared to.

Reference Counting and Garbage Collection. Both are
memory safe and support weak references. However, they do

not enforce immediate resource reclamation andmake it easy

to keep object references for too long.

Locks. Acquiring a per-object lock when holding a refer-
ence is a valid, alternative approach. However, it is not trivial

to avoid deadlocks and resource reclamation gets delayed.

RCU. Read-copy-update is a method to avoid locks while

threads access data structures in parallel. It is thus orthogonal

to our single-thread-focused approach.

NoConcurrency. The problems described in this paper do

not occur without asynchronous computation and thus with-

out concurrency. For example, seL4 [5] does not run kernel

threads concurrently. Instead, long-running system calls are

fully aborted on preemption and restarted afterwards. We do

not believe that this programmingmodel can be applied toM3

with its asynchronous communication between the kernel

and Tilemux. Dealingwith asynchronous calls by suspending

tasks seems more ergonomic and easier to comprehend.

6 Conclusion
This work presented an approach for managing object ref-

erences so that resources can be reclaimed immediately. We

enforce that suspended tasks can only hold weak references.

The implementation ismade robust against programmingmis-

takes using static analysis and runtime checks. An evaluation

on the M3 platform showed that runtime performance is only

minimally impeded. In future work, we intend to look into

howmuchmemory our approach can safe in kernel-resource-

contended scenarios. We assume that not only kernels might

take advantage of the proposed approach.Whenever services

use asynchronous computation and globally-shared objects,

robust and immediate resource reclamation seems desirable.

Acknowledgments
This research is funded by the European Union’s Horizon Eu-

rope researchand innovationprogramundergrant agreement

No. 101092598 (COREnext).

References
[1] NilsAsmussen. 2024. M3. https://github.com/Barkhausen-Institut/M3

https://github.com/Barkhausen-Institut/M3


Robust and Immediate Resource Reclamation withM3 KISV ’24, November 4–6, 2024, Austin, TX, USA

[2] Nils Asmussen, Marcus Völp, Benedikt Nöthen, Hermann Härtig,

and Gerhard Fettweis. 2016. M3: A Hardware/Operating-System

Co-Design to Tame Heterogeneous Manycores. In 21st International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS) (Atlanta, GA, USA). ACM, 189–203.

https://doi.org/10.1145/2872362.2872371
[3] Jongmoo Choi, Seungjae Baek, and Sung Y. Shin. 2006. Design

and implementation of a kernel resource protector for robustness

of Linux module programming. In Proceedings of the 2006 ACM
symposium on Applied computing. ACM, Dijon France, 1477–1481.

https://doi.org/10.1145/1141277.1141621
[4] Sang-Hoon Kim, Jinkyu Jeong, Jin-Soo Kim, and Seungryoul Maeng.

2016. SmartLMK: A Memory Reclamation Scheme for Improving

User-PerceivedAppLaunchTime.ACMTransactions onEmbeddedCom-
puting Systems 15, 3 (July 2016), 1–25. https://doi.org/10.1145/2894755

[5] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,

David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,

Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and

SimonWinwood. 2009. seL4: Formal Verification of an OS Kernel. In

Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems
Principles (Big Sky, Montana, USA) (SOSP’09). ACM, New York, NY,

USA, 207–220. https://doi.org/10.1145/1629575.1629596
[6] Bernhard Kragl, Shaz Qadeer, and Thomas A. Henzinger. 2018.

Synchronizing the Asynchronous. In 29th International Conference on
Concurrency Theory (CONCUR 2018) (Leibniz International Proceedings
in Informatics (LIPIcs), Vol. 118), Sven Schewe and Lijun Zhang

(Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl,

Germany, 21:1–21:17. https://doi.org/10.4230/LIPIcs.CONCUR.2018.21
[7] MDN Contributors. 2024. Introducing asynchronous JavaScript.

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Async
hronous/Introducing

[8] Samuel Moelius. 2021. Write Rust lints without forking Clippy.

https://blog.trailofbits.com/2021/11/09/write-rust-lints-without-
forking-clippy/

[9] Taylor Cramer. 2024. async/await. https://rust-lang.github.io/async-
book/03_async_await/01_chapter.html

[10] TheDenoAuthors. 2024. Deno, the next-generation JavaScript runtime.

https://deno.com/
[11] The Rust Community. 2024. Borrowing. https://doc.rust-

lang.org/stable/rust-by-example/scope/borrow.html
[12] The Rust Project Developers. 2024. Clippy. https://github.com/rust-

lang/rust-clippy
[13] The Rust Project Developers. 2024. RefCell in std::cell.

https://doc.rust-lang.org/std/cell/struct.RefCell.html
[14] The Rust Project Developers. 2024. Rust Programming Language.

https://www.rust-lang.org/
[15] The Rust Project Developers. 2024. std::rc. https://doc.rust-

lang.org/std/rc/index.html
[16] The Rust Project Developers. 2024. Weak in std::rc. https://doc.rust-

lang.org/std/rc/struct.Weak.html
[17] The Rust Project Developers. 2024. What is rustc? https://doc.rust-

lang.org/rustc/index.html
[18] Tokio Contributors. 2024. Tokio - An asynchronous Rust runtime.

https://tokio.rs/

https://doi.org/10.1145/2872362.2872371
https://doi.org/10.1145/1141277.1141621
https://doi.org/10.1145/2894755
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.4230/LIPIcs.CONCUR.2018.21
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Asynchronous/Introducing
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Asynchronous/Introducing
https://blog.trailofbits.com/2021/11/09/write-rust-lints-without-forking-clippy/
https://blog.trailofbits.com/2021/11/09/write-rust-lints-without-forking-clippy/
https://rust-lang.github.io/async-book/03_async_await/01_chapter.html
https://rust-lang.github.io/async-book/03_async_await/01_chapter.html
https://deno.com/
https://doc.rust-lang.org/stable/rust-by-example/scope/borrow.html
https://doc.rust-lang.org/stable/rust-by-example/scope/borrow.html
https://github.com/rust-lang/rust-clippy
https://github.com/rust-lang/rust-clippy
https://doc.rust-lang.org/std/cell/struct.RefCell.html
https://www.rust-lang.org/
https://doc.rust-lang.org/std/rc/index.html
https://doc.rust-lang.org/std/rc/index.html
https://doc.rust-lang.org/std/rc/struct.Weak.html
https://doc.rust-lang.org/std/rc/struct.Weak.html
https://doc.rust-lang.org/rustc/index.html
https://doc.rust-lang.org/rustc/index.html
https://tokio.rs/

	Abstract
	1 Introduction
	2 Design
	2.1 Existing Guarantees From Rust
	2.2 Runtime Checks
	2.3 Static Analysis
	2.4 Custom Reference Abstractions
	2.5 Invalidation of Weak References
	2.6 Object Mutations

	3 Case Study with M.83
	3.1 Background on M.83
	3.2 Implementation

	4 Evaluation
	4.1 Evaluation Platform
	4.2 Performance Impact on Syscalls
	4.3 Application Start and Teardown

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

