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Abstract— Highly dynamic maneuvers pose a challenge to
conventional state estimators of quadrotors in rapidly tracking
the pose. This paper proposes a data-driven Koopman operator-
based error-state Kalman filter (K-ESKF) to enhance pose esti-
mation in agile flight. Our method uses the Koopman operator
theory to transform the full-state nonlinear quadrotor dynamics
into a lifted bilinear control system driven by accelerations
and angular rates. A deep neural network (DNN) is used to
represent the Koopman observable functions. Our proposed
K-ESKF extends the propagation step of a standard error-
state Kalman filter (ESKF) using the lifted bilinear control
system. An open-source quadrotor dataset, NeuroBEM, is used
for training and evaluating the DNN and for testing the K-
ESKF. The learned Koopman bilinear system demonstrates a
60% less attitude errors compared to the first-order Euler
method in terms of model accuracy. Using real trajectories from
the dataset, our proposed K-ESKF can estimate the pose as
accurately as the ESKF during normal flight. More importantly,
our proposed approach outperforms the ESKF by achieving
about 50% less attitude and velocity estimation errors in a
highly agile flight. During drastic attitude and velocity changes,
the K-ESKF can still estimate the pose while the ESKF loses
tracking.

I. INTRODUCTION

Dealing with nonlinearity is a challenge in estimation and
optimization within robotics. The Kalman filter [1] is an
optimal recursive estimator that achieves the Cramér-Rao
Lower Bound for linear time-invariant systems (LTIs) [2].
Several efforts have been made to deal with nonlinearity
based on the dynamic model, such as the extended Kalman
filter (EKF) [2], the unscented Kalman filter (UKF) [3], and
the particle filter [4]. Koopman operator theory provides a
unique approach to nonlinear systems, allowing data-driven
modeling without the need for explicit system dynamics. It
also simplifies the design of controllers and estimators by
transforming the nonlinear system into a lifted linear system.
The Koopman operator [5] extends the original state space
with infinite observables, where nonlinear system evolves
linearly in this infinite dimension space.

The challenge is to find a finite set of observables that well
approximate the Koopman operator. Williams [6] proposed
the extended dynamic mode decomposition (EDMD) method
to approximate the Koopman operator using a finite set
of predefined observables, such as Hermite polynomials,
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radial basis functions (RBFs), and discontinuous spectral
elements. Deep learning has been shown to be effective in
approximating the nonlinear mapping and can be used to
identify a set of functions that span the space of observ-
ables [7]–[9]. Folkestad et al. [10] used deep neural networks
(DNN) to directly approximate the linear transformation
with predefined observables. In our previous work [11], we
combined DNN and EDMD, where the DNN is used only
to train observables and the EDMD is used to find the linear
transition matrix.

Recently, there has been an increasing interest in ap-
plying the Koopman operator for estimation and control
with control-affine systems, which can represent most of the
dynamical systems, including autonomous ground vehicles
and quadrotors. According to Koopman Canonical Transform
(KCT), the nonlinear control affine system can be approx-
imated by a lifted koopman bilinear system, which can be
regulated effectively through e.g., optimal control [9], [11],
[12] and model predictive control [13], [14].

Koopman operator theory has also gained attention for its
applications in state estimation. Surana et al. [15] developed
a Koopman operator-based approach for observer synthesis
in discrete-time autonomous nonlinear systems. The ap-
proach computes the Koopman spectrum through a Galerkin-
weighted residual approach, also known as a kernel-based
EDMD. Performance was evaluated on a 2D system with
a closed-form Koopman operator, which does not require
the Galerkin-based approach. In pioneering research [16],
Surana extended this approach to control-affine systems,
proposed an observer design using the Koopman observer
form (KOF) in continuous time and discussed the nonlinear
observability criterion. While [15], [16] demonstrated the
advantages of the KOF over the EKF for 2D systems with
a lifted state space of dimension three, the simplicity of
the examples does not show the full potential of the KOF
in real applications. Netto and Miliani [17] proposed a
generalized maximum likelihood Koopman operator-based
Kalman filter (GM-KKF) to estimate the rotor angle and
speed of synchronous generators. In particular, the GM-
KKF exhibited faster convergence compared to Koopman
operator-based Kalman filters (KKFs) using a batch-mode
regression formulation. Syed et al. [18] presented a KKF
for fault detection in superconducting high-frequency cav-
ities and showed that the KKF can achieve a speedup of
three orders of magnitude compared to the UKF while
maintaining the same detection capabilities. A KKF was
applied to distributed systems [19], and an extension was
introduced to incorporate saturation in innovations to account
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for measurement outliers [20]. Another application can be
found in the estimation of the wrench acting on a 3D elastic
rod [21]. Overall, the KKF shows better performance than the
conventional estimator such as EKF in terms of robustness,
accuracy, and convergence.

However, the systems in the above work [15], [17]–[20]
do not have an input term, which makes the computa-
tion of the Koopman operator rather simple and limits its
application in robotics. Furthermore, the choice of lifting
functions/observables has an impact on the approximation
of the Koopman operator with a nonlinear system. Most
work has chosen a kernel-based approach that acquires
the Koopman tuple decomposition (or EDMD) [15], [16],
[19]–[21]. Depending on the application, a predefined set
of observables can be used [17], [18]. Another issue to
consider is that the computational complexity of the KKF
increases exponentially with the increasing dimension of the
observables.

The paper proposes a data-driven Koopman operator-based
error-state Kalman filter (K-ESKF) for accurate and robust
pose and inertial measurement unit (IMU) bias estimation
in quadrotor systems. Instead of using a kernel-based ap-
proach or predefined observables, we present a DNN-based
Koopman bilinear modeling approach to accurately model
the full-state dynamics of quadrotors. The DNN represents
the parameterized observable functions with input of quater-
nions. An open-source drone dataset, NeuroBEM [22], has
been used for the training and evaluation of the DNN and
test of the K-ESKF. Our lifted bilinear model shows 60%
less attitude errors than the first-order Euler method and can
improve velocity accuracy with higher DNN output dimen-
sions. Our main contribution is to extend the propagation
update of the state variables in the error-state Kalman filter
with the Koopman bilinear control system. This extension
can ease the computational burden introduced by the high
dimension of the lifted state in the full realization of the
Kalman filter. Our proposed K-ESKF can estimate the pose
and IMU biases not only in normal operation, but also in
highly agile motions where the standard ESKF suffers from
loss of tracking.

The remainder of this paper is organized as follows:
Section II presents preliminaries. In Section III, we detail
the application of the K-ESKF to a quadrotor. The focus
then shifts to Section IV, where we discuss our experimental
results. Finally, Section V concludes our work.

Notation: Scalars are denoted by non-bold x. Vectors and
matrices are set in bold font x and X . Let [·]T denote
transpose. The subscript k ∈ N+ denotes a discrete time
instant. H represents the Hilbert space. Measurements are
denoted by a tilde, ỹ, and estimates are denoted by a hat
x̂. ∥·∥F denotes the Frobenius norm. The left subscripts
Wx and Bx denote vector x expressed in the world and
the body coordinates, respectively. Unit quaternions q =
[qw, qx, qy, qz]

T are used to represent the attitude, e.g., qWB

is the attitude of the quadrotor body with respect to the world
frame. We use ⊗ to denote quaternion multiplication. Let
[xk] define a batch of data, where k = 1, · · · , N .

II. PRELIMINARY

A. The Koopman Operator Review

We consider the dynamics of a discrete-time nonlinear
autonomous system:

xk+1 = f(xk), (1)

with xk ∈ X ⊂ Rn, where X is the state space.
The preliminaries of the Koopman theory can be found

in [6], [23], [24]. The Koopman operator K acts on
observable functions gi(x) and evolves them over time.
Mathematically, for the vector-valued observable g(xk) =[
g1(xk) · · · gp(xk)

]T ∈ G ⊂ H : Rn 7→ Cp, where G is
the observable space, the Koopman operator transforms g as
follows:

Kg(xk) = g ◦ f(xk) = g(xk+1), (2)

with ◦ denoting the composition operator. It is noted that the
dimension p should be infinite in theory p → ∞, however,
in practice, p will be finite. Assuming that the observable
function gi is spanned by a set of Koopman eigenfunctions
{φi : Rn 7→ C}pi=1. Therefore, g can be decomposed into the
eigenfunctions [6]

g(xk) = V φ(xk), (3)

where φ(xk) =
[
φ1(xk) · · · φp(xk)

]T
and V denotes

the matrix of Koopman modes, where the ith column of V
describes the evolution of the ith Koopman eigenfunction.

The Koopman operator maps the functions of the state
space into the eigenfunctions, yielding:

[Kφ](xk) = Λφ(xk) (4)

where the Koopman eigenvalues lies in the diagonal of the
matrix Λ. Therefore, within the space of the observable
functions, the original nonlinear dynamics evolve linearly as
follows:

g(xk+1) = [Kg](xk) = V Λφ(xk) = V ΛV −1g(xk). (5)

In this work, the observables g(x) are represented by the
parameterized functions learned in a DNN. The learned
observables together with the original state form the lifted
state space. Then it becomes an optimization problem to
find an optimal solution of V ΛV −1 as the lifted transition
matrix.

B. Koopman Lifted Bilinear Modeling

Next we extend the Koopman linear model with control
input and consider an input-affine nonlinear autonomous
system [16]:

xk+1 = f(xk) +

m∑
j=1

bj(xk)uj,k, (6)

yk = h(xk), (7)

where the input functions bj are the j-th nonlinear vector-
valued terms depending on the state. The input vector is
given by uk =

[
u1,k · · · um,k

]T ∈ U ⊂ Rm at time
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instance k. Here yk is the measurement at time k, and h is
nonlinear measurement function.

Defining the Koopman lifted state space by zk = g(xk)
and assuming that bj lies inside the lifted state space, we
transform the system (6) into a bilinear control form [16]

zk+1 = Azk +

m∑
j=1

Buj
zkuj,k, (8)

yk = Czk, (9)

where A ∈ Rp×p is a matrix that captures the linear part
of the dynamics, and Buj ∈ Rp×p are matrices related
to the control terms uj . If the measurement equation (7)
is nonlinear with respect to the state, we can apply the
Koopman operator to h using KCT, resulting in a constant
lifted measurement matrix C. In practice, it is not possible
to have infinite dimensional observables. Therefore, an ade-
quate set of observables will have an impact on the accuracy
of the Koopman bilinear model. Note that the elements in the
matrices A, Buj

, and the observables g(x) are assumed to
be in the space of R. Theoretically, they can be complex [6]
and for dealing with their complex elements, see [6], [15].

C. Quadrotor Model Dynamics

The kinematics of a quadrotor describes the position
pW , the velocity vW and the attitude qWB of a rigid
body in three-dimensional space. The system is driven by
accelerometer and gyroscope measurements, which provide
information about acceleration and angular velocity within
the body frame. The state is represented by

x =
[
Wp Wv qWB ba bg

]T
. (10)

The input is given by

u =
[
Bã Bω̃

]T
. (11)

The IMU measurements are subject to corruption by both
white noise (wa, wg) and bias (ba, bg)

Bã = Ba+ ba +wa, (12)

Bω̃ = Bω + bg +wg. (13)

The acceleration and angular velocity biases are modeled as
random walk processes with their derivatives represented by
white Gaussian processes wba and wbg . The dynamics of
the quadrotor and IMU biases are described as follows [22],
[25], [26]

q̇WB = qWB ⊗
[

0

Bω/2

]
,

W v̇ = R(qWB)(fprop + fext) + Wg,

W ṗ = Wv, ḃa = wba , ḃg = wbg ,

(14)

where R(qWB) represents the rotation matrix of the
body frame with respect to the world frame, Wg =
[0, 0,−9.81m/s2]T is the gravitational acceleration in the
world frame, fprop is the collective specific force generated
by the propellers, fext is the external specific force including
aerodynamic drag and other external force. The purpose

of this paper is to estimate the attitude of the quadrotor
rather than to estimate the forces. Here we assume that the
acceleration measurement after removing the bias is equal to
the acceleration in the body frame, i.e. Ba = Bã − ba =
fprop + fext. And the gravity is constant since we consider
indoor quadrotor applications in a rather small space.

III. METHODOLOGY

A. Data-Driven Bilinearization of Quadrotor Dynamics

The nonlinearity in (14) only exists in the velocity and
quaternion dynamics. The quaternion dynamics depends on
the quaternion and the input of angular velocities, and it
fulfills the input-affine form (6). This property allows the
application of the Koopman operator to transfer the quater-
nion dynamics into the bilinear control form as (8) driven
by the angular velocity. In addition, the nonlinearity in the
velocity equation is also caused by the quaternion in terms
of the rotation matrix R(qWB). Therefore, the Koopman
observable functions can only depend on the quaternion.

To efficiently explore the meansurement data and learn
proper koopman observation function, we present a fully
connected deep neural network as parameterized functions
being Koopman observables, as shown in Fig. 1. The input
of the network is a batch of quaternions [qk], k = 1, ..., N ,
where the subscript is omitted for simplicity. The param-
eterized function is denoted by ϕk = ϕ(qk) ∈ Rp−4.
We concatenate the original state and the network output
zk =

[
qk ϕk

]T ∈ Rp, which allows the reconstruction of
quaternions without a decoding layer. The quaternion bilinear
form is formulated as

ẑk+1 = Azk +
∑3

j=1 Bωjzkωj,k, (15)

A,Bωj
= argmin

A, Bωj

∑N
k=1 ∥zk+1 − ẑk+1∥F . (16)

The solution can be obtained in a straightforward manner
using least squares fitting. The bilinear matrices A and Bωj

are updated after each iteration of the DNN. In a similar
manner, the velocity dynamics is formulated as

W v̂k+1 = Wvk +
∑3

j=1 Baj
zkBaj,k + Wg∆t, (17)

Baj = argmin
Ba,j

∑N
k=1 ∥Wvk+1 − W v̂k+1∥F . (18)

The loss function is defined as follows:

L =
1

N

∑N
k=1(|eqk+1

|+ ∥ϕk+1(qk+1)− ϕ̂k+1(q̂k+1)∥F
+ ∥Wvk+1 − W v̂k+1∥F )

(19)
Note that the quaternion error is characterized by a smoother
measure of quaternion distance (adapted from [27])

eqk
= 1− (qk · q̂k)2 ∈ (0, 1). (20)

B. Koopman Operator-based ESKF

Before presenting the K-ESKF, let us briefly revisit the
ESKF. The system state x = x̄+δx compromises a nominal
state x̄, and an error-state δx.
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Quaternions [qk]

[ϕk]

Angular rates [Bωk]

[ϕk]

Velocities [W vk] Accelerations [Bak]

+

+

MSE(eqk+1
)+

MSE(ϕk+1, ϕ̂k+1)

MSE(W vk+1,W v̂k+1)argmin
Baj

∑N
k=1 ∥W vk+1 − W v̂k+1∥F

Loss

argmin
A, Bωj

∑N
k=1 ∥zk+1 − ẑk+1∥F

Fig. 1: Simultaneous bilinearization of quadrotor dynamics and learning of the observables of quaternions using a DNN.

The benefit of this error-state formulation is that the error-
state is small-signal and is more closely approximated to be
linear [25], [28]. The dimension of the system (14) is reduced
by 1 and becomes 15 due to the fact that the error-state of
the quaternion is the local perturbation δθ ∈ R3:

˙δθ = −[Bω̃ − bg]×δθ − δbg −wg,

δv̇ = −RWB([Bã− ba]×δθ + δba +wa),

δṗ = δv, δ̇ba = wba , δ̇bg = wbg .

(21)

The measurement update uses the position residual, which
is a linear measurement model. Due to space constraints,
we will not introduce the complete ESKF formulation. For
details, refer to [25], [29].

We have represented the observables of quaternions using
the parameterized functions defined by the DNN and bilin-
earized the quaternion and velocity dynamics equations in the
previous section. In the K-ESKF, we extend the propagation
of the quaternion and velocity using the Koopman bilinear
control form (15) and (17). The quaternion can be retrieved
by qk = [I4×4 | 04×(p−4)]zk. The other computations
remain the same as in a standard ESKF.

Remark 1: The difference between the standard ESKF and
our K-ESKF is the propagation equations for the quaternion
and velocity. The standard ESKF usually uses the first-order
Euler method. Our approach is a minimal realization of the
Koopman operator-based model on the Kalman filtering. A
full realization is to apply a linear Kalman filter on the
bilinear model in the both propagation and measurement
update, as well as the error-state covariance. However, it
poses challenges on the computational efficiency due to the
increased lifted state space.

Remark 2: Using the full realization, the resulting Kalman
filter is still time-varying, depending on the nominal state
and the input. An ideal case is that the lifted system is LTI
and the input and measurement noise are stationary. In this
case, the limiting solution of the Kalman filter can be solved
in advance via the Ricatti equation, giving a computational
complexity of O(p2), depending on lifted state dimension.
As a reference, the computing complexity of an EKF is
O(n3) [30], depending on the original state dimension.
Therefore, the computation of a full realization KKF is more
complex than that of an EKF due to p ≫ n, for example, in
our application, we select p = 32. However, in our approach,
the core computation of the Kalman filter, i.e., the Kalman

gain, keeps the same complexity as the standard ESKF.
Remark 3: Another reason for choosing the minimal

realization is that our focus is on how well the bilinearization
of the quadrotor dynamics can be approximated via the
Koopman operator in highly dynamic scenarios, which pose
challenges to the traditional propagation method.

IV. EXPERIMENTAL RESULTS

This section evaluates the performance of the K-ESKF on
a quadrotor using an open-source dataset. Our investigation
focuses on three key aspects: 1. How is the model prediction
accuracy of the Koopman bilinear control system com-
pared to conventional integration using the first-order Euler
method? 2. What is the relationship between the dimension
of the observables and the model accuracy? 3. How does the
K-ESKF perform compare to the ESKF for quadrotor pose
and IMU bias estimation under different maneuvers?

A. Quadrotor Dataset and DNN Setup

We use the NeuroBEM [22] from the University of Zurich,
an open-source quadrotor dataset. This dataset is chosen for
its comprehensive set of flight maneuvers and diverse sce-
narios, including 2D/3D circles, lemniscate patterns, linear
oscillations, melon-like, and random point flight maneuvers.
These maneuvers cover a wide range of maneuvers from
low speed to highly agile and high speed trajectories. The
dataset provides detailed information on the poses captured
with high precision by a motion capture system and includes
onboard IMU measurements. Out of the 1.8 million data
points available, we allocate 50% for training and 10%
for validation. Additionally, two flights are reserved for
showcasing in Section IV-C: wobbly circle and melon-shaped
trajectories.

For the training of our neural network and subsequent
bilinearization, we use the ground truth for quaternions and
velocities, and processed accelerations and angular rates at
a sampling rate of 400Hz. The architecture of the DNN
involves three hidden layers, each comprising units to match
the output dimension. The output layer is designed to define
parameterized functions as observable functions. The dimen-
sion of the output layer is an open question, which will be
investigated in Section IV-B. The training process involves
batches of 50,000 data points. We use the Adam optimizer
with a learning rate of 0.001. The training spans 500 epochs.
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The hyperbolic tangent function (tanh) is chosen as the
activation function.

B. Model Accuracy vs Observable Dimension

The model accuracy of attitude and velocity is evaluated
by comparing our deep Koopman bilinear modeling with
results from the first-order Euler integration results from
multiple-step prediction. For the experiments, we change the
dimension of the output layer of the DNN from 4 to 36 in
increments of 4.

To evaluate the attitude accuracy, the attitude root mean
square errors (RMSEs) are computed in Fig. 2a. The
attitude RMSEs are 60% less than those derived from
the first-order integration approach and are consistently
stable, about 4 degrees, across different dimensions of the
parameterized functions. Figure 2b shows that the velocity
accuracy depends on the dimension of the DNN output.
The velocity accuracy improves with higher dimensions and
converges after a dimension of 24. As a benchmark, the
velocity obtained using the true attitude provides the best
results. More realistic results are given by the velocities
computed using the attitudes by the integration method,
which, however, yield a velocity error of 14 m/s.

The accuracy of the attitude model can be explained by
the fact that the quaternion dynamics involves the multipli-
cation between the quaternion and the angular rate, which
is inherently close to bilinear model. The combination of
the quaternion and the angular rate has been proven to be
effective in approximating the quaternion dynamics [12]. The
difference is that the input is included in the lifted state space,
whereas our observable functions do not contain the angular
velocity. Conversely, the accuracy of the velocity dynamics,
which is influenced by the coordinate transformation of the
body acceleration to the world frame, benefits from more
observables. More observable functions on the quaternion
enable a more accurate approximation of the rotation matrix.

Therefore, the selection of the DNN output dimension
depends on the requirement of the velocity accuracy. From
Fig. 2b, a dimension greater than 10 is recommended for
this application and dataset. Considering the convergence of
velocity accuracy after dimension 24, a reasonable choice is
28. This not only achieves optimal model accuracy but also
keeps the DNN as compact as possible. In summary, the
results confirm the effectiveness of our proposed approach
and demonstrate stable and accurate prediction, especially in
the quaternion dynamics.

C. Estimation Results

This subsection evaluates our proposed K-ESKF using
flight measurements from the NeuroBEM dataset, and com-
pares it with the standard ESKF.

1) Prerequisites for the K-ESKF and the standard ESKF:
The initial conditions for the error-state include a standard
deviation (STD) of 0.2m for position, 1m/s for velocity,
8 deg for attitude (converted to quaternion), 1m/s2 for
acceleration bias, and 0.1 rad/s for angular rate bias. The
position measurement noise is set at 0.2m. Although the
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Fig. 2: Attitude and velocity model accuracy with different DNN output
layer dimension. Comparison of RMSEs between the bilinear model and
the 1st-order integration.

NeuroBEM does not provide position measurements from
any sensors, we use the ground truth with additive white
Gaussian noise which is used in the measurement update. In
practice, indoor localization approaches such as vision- or
lidar-based approaches can be used on quadrotors.

The noise densities for the acceleration and angular rate
are 1×10−1 m/(s

2√
Hz) and 1×10−3 rad/(s

√
Hz), respec-

tively. The noise densities for acceleration and angular rate
biases are 4×10−5 m/(s

3√
Hz) and 4×10−8 rad/(s

2√
Hz),

respectively. The initialization of position, velocity, and
attitude uses the ground truth with additive Gaussian noise of
STD of 2m, 0.5m/s, and 8 deg, while the initial IMU biases
are zero. We manually add an acceleration bias of 0.2m/s2

and an angular rate bias of 0.05 rad/s to the IMU data. The
prediction step runs at 400Hz, while the measurement update
operates at 100Hz. According to the findings from Sec. IV-
B, we have chosen 28 as the DNN output dimension.

Note that the standard ESKF uses the first-order integra-
tion method. Although the Runge-Kutta method (RK4) could
be used, but the accuracy improvement is negligible due to
the high prediction sampling rate of 400Hz.

2) Comparison of Estimation Results: We have chosen
two different trajectories from the NeuroBEM dataset: wob-
bly circle and melon shape trajectories.

Trajectory 1: Wobbly circle. Figure 3a presents the
ground truth of the wobbly-circle trajectory. Both the K-
ESKF and the standard ESKF are able to estimate the attitude
with equivalent accuracy as shown in Fig. 3b. The velocity
estimates from both approaches have the same level of
accuracy. In this trajectory, the operations of the angular rate
and the acceleration are in the normal range such that both
methods can deliver the same performance.

Trajectory 2: Melon shape. Figure 4a provides the
ground truth of the melon-shaped trajectory, another impres-
sive trajectory provided by the NeuroBEM. The acceleration
and angular rate are operating at very wide range, with a
maximal angular rate of 433 deg/s and a maximal accel-
eration of 35.6m/s2. Significant differences in the attitude
estimates can be found in the peaks of the ESKF curve in
Fig. 4b. The peaks indicate several transitions between −π
to π rad even in the roll angle. The ESKF cannot track the
roll and yaw angles fast enough, while the K-ESKF tracks
the attitude more accurately. In addition, Fig. 4c shows that
the K-ESKF outperforms the ESKF in tracking the velocity.
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Fig. 3: Trajectory 1: Wobbly circle. The K-ESKF estimates the attitude and the velocity at the same level as the ESKF.
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Fig. 4: Trajectory 2: Melon shape. The K-ESKF outperforms the ESKF in both tracking the attitude and the velocity.

TABLE I: Trajectory 2: RMSE for Position, Velocity, and Euler Angles.

ESKF K-ESKF

Position (m) [0.25, 0.19, 0.15] [0.08, 0.08, 0.10]
Velocity (m/s) [1.04, 0.75, 0.64] [0.32, 0.30, 0.41]
Attitude (deg) [8.00, 3.52, 7.26] [3.58, 2.14, 4.00]

Table I summarizes the RMSEs of the position, velocity and
attitude estimates. Using the K-ESKF, the attitude error and
the velocity error are reduced by about 50%. This aggressive
trajectory highlights that the K-ESKF not only estimates the
pose as accurately as the standard ESKF in normal flights
but also achieves better results in highly agile scenarios. The
reason is that the K-ESKF can estimate the IMU biases more
stably than the ESKF, as shown in Fig. 5.

V. CONCLUSIONS

The paper proposes a novel approach, the Koopman
operator-based error-state Kalman filter (K-ESKF), for ac-
curate pose and IMU bias estimation in quadrotors, espe-
cially during highly agile maneuvers. Using the data-driven
Koopman bilinear modeling, we can effectively capture the
full-state dynamics of a quadrotor, especially in quaternion.
Through the evaluation using the NeuroBEM quadrotor
dataset, our method demonstrates better performance com-
pared to the first-order Euler method. As the DNN output
dimension increases, we observe an exponential reduction in
the velocity prediction error. Using two trajectories from the
dataset, the comparative analysis with the standard ESKF
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Fig. 5: Trajectory 2: Melon shape. The K-ESKF estimates the IMU bias
more robust than the ESKF. As a reference, the acceleration bias is 0.2m/s2

and the angular rate bias is 0.05 rad/s.

highlights that our approach is not only suitable for normal
flights but also accurately tracks the pose during highly agile
maneuvers. Evaluation using the melon-shaped flight con-
firms that the K-ESKF significantly outperforms the ESKF,
achieving an approximately 50% reduction in attitude and ve-
locity errors due to its ability to accurately track IMU biases.
These results highlight the robustness and effectiveness of the
proposed K-ESKF for quadrotors in highly agile scenarios.

Future work could extend the K-ESKF to the error-state
covariance update by training the Koopman observation
functions on the error state, rather than on the quaternion.
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